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Preface

This book is intended to help undergraduate engineering students learn the fundamentals of fl uid 

mechanics. It was developed for use in a fi rst course on fl uid mechanics, either one or two semesters/

terms. While the principles of this course have been well-established for many years, fl uid  mechanics 

education has evolved and improved.

 With this eighth edition, a new team of authors is working to continue the distinguished tradi-

tion of this text. As it has throughout the past seven editions, the original core prepared by Munson, 

Young, and Okiishi remains. We have sought to augment this fi ne text, drawing on our many years 

of teaching experience. Based on our experience and suggestions from colleagues and students, 

we have made a number of changes to this edition. The changes (listed below, and indicated by the 

word New in descriptions in this preface) are made to clarify, update, and expand certain ideas and 

concepts.

New to This Edition

In addition to the continual eff ort of updating the scope of the material presented and improving the 

presentation of all of the material, the following items are new to this edition.

Self-Contained: Material that had been removed from the text and provided only on-line has been 

brought back into the text. Most notable are Section 5.4 on the second law of thermodynamics and 

useful energy loss and Appendix E containing units conversion factors.

Compressible Flow: Chapter 11 on compressible fl ow has been extensively reorganized and a lim-

ited amount of new material added. There are ten new example problems; some of them replace 

previous examples. All have special emphasis on engineering applications of the material. Example 

solutions employ tabulated compressible fl ow functions as well as graphs.

Appendices: Appendix A has been expanded. Compressible fl ow function tables have been added 

to Appendix D. A new extensive set of units conversion factors in a useful and compact format 

appears in Appendix E.

Computational Fluid Dynamics (CFD): A still unsettled issue in introductory fl uid mechanics 

texts is what to do about computational fl uid dynamics. A complete development of the subject is 

well beyond the scope of an introductory text; nevertheless, highly complex, highly capable CFD 

codes are being employed for engineering design and analysis in a continually expanding number 

of industries. We have chosen to provide a description of many of the challenges and practices that 

characterize widely used CFD codes. Our aim is twofold: to show how reasonably complex fl ows 

can be computed and to foster a healthy skepticism in the nonspecialist. This material is presented 

in an expanded Appendix A.

Problems and Examples: Many new examples and problems emphasize engineering applica-

tions. Approximately 30% new homework problems have been added for this edition, and there are 

 additional problems in WileyPLUS.

Value: Nearly everyone is concerned about the upward spiral of textbook prices (yes, even authors 

and publishers!). We have taken a few modest steps to keep the price of this book reasonable. Most 

of these steps involve the removal of “bells and whistles.” For example, the thumbnail photos that 

accompanied the video icons in the 7th edition have been dropped. Wiley has also developed a num-

ber of diff erent products to meet diff ering student needs and budgets.
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Key Features

Illustrations, Photographs, and Videos
Fluid mechanics has always been a “visual” subject—much can be learned by viewing various char-

acteristics of fl uid fl ow. Fortunately this visual component is becoming easier to incorporate into 

the learning environment, for both access and delivery, and is an important help in learning fl uid 

mechanics. Thus, many photographs and illustrations have been included in the book. Some of these 

are within the text material; some are used to enhance the example problems; and some are included 

as margin fi gures of the type shown in the left margin to more clearly illustrate various points dis-

cussed in the text. Numerous video segments illustrate many interesting and practical applications 

of real-world fl uid phenomena. Each video segment is identifi ed at the appropriate location in the 

text material by a video icon of the type shown in the left margin. Each video segment has a separate 

associated text description of what is shown in the video. There are many homework problems that 

are directly related to the topics in the videos.

Examples
One of our aims is to represent fl uid mechanics as it really is—an exciting and useful discipline. To 

this end, we include analyses of numerous everyday examples of fl uid-fl ow phenomena to which 

students and faculty can easily relate. In this edition there are numerous examples that provide de-

tailed solutions to a variety of problems. Many of the examples illustrate engineering applications of 

fl uid mechanics, as is appropriate in an engineering textbook. Several illustrate what happens if one 

or more of the parameters is changed. This gives the student a better feel for some of the basic prin-

ciples involved. In addition, many of the examples contain photographs of the actual device or item 

involved in the example. Also, all of the examples are outlined and carried out with the problem 

solving methodology of “Given, Find, Solution, and Comment” as discussed in the “Note to User” 

before Example 1.1.

The Wide World of Fluids
The set of approximately 60 short “The Wide World of Fluids” stories refl ect some important, and 

novel, ways that fl uid mechanics aff ects our lives. Many of these stories have homework problems 

associated with them. The title of this feature has been changed from the 7th edition’s “Fluids in the 

News” because the stories cover more than just the latest developments in fl uid mechanics.

Homework Problems
A wide variety of homework problems (approximately 30% new to this edition) stresses the practical 

application of principles. The problems are grouped and identifi ed according to topic. The following 

types of problems are included:

1) “standard” problems,

2) computer problems,

3) discussion problems,

4) supply-your-own-data problems,

5) problems based on “The Wide World of Fluids” topics,

6) problems based on the videos,

7) “Lifelong learning” problems,

8) problems that require the user to obtain a photograph/image of a given flow situation and write 

a brief paragraph to describe it,

E

Fr = 1

Fr < 1

Fr > 1

y

 (© Photograph courtesy 
of Pend Oreille Public 
Utility District.)

V1.9 Floating 
razor bladeVIDEO
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Computer Problems—Several problems are designated as computer problems. Depending on the 

preference of the instructor or student, any of the problems with numerical data may be solved with 

the aid of a personal computer, a programmable calculator, or even a smartphone.

Lifelong Learning Problems—Each chapter has lifelong learning problems that involve obtaining 

additional information about various fl uid mechanics topics and writing a brief report about this 

material.

Well-Paced Concept and Problem-Solving Development
Since this is an introductory text, we have designed the presentation of material to allow for the grad-

ual development of student confi dence in fl uid mechanics problem solving. Each important concept 

or notion is considered in terms of simple and easy-to-understand circumstances before more com-

plicated features are introduced. Many pages contain a brief summary (a highlight) sentence in the 

margin that serves to prepare or remind the reader about an important concept discussed on that page.

 Several brief elements have been included in each chapter to help the student see the “big 

 picture” and recognize the central points developed in the chapter. A brief Learning Objectives sec-

tion is provided at the beginning of each chapter. It is helpful to read through this list prior to reading 

the chapter to gain a preview of the main concepts presented. Upon completion of the chapter, it is 

benefi cial to look back at the original learning objectives. Additional reinforcement of these learn-

ing objectives is provided in the form of a Chapter Summary and Study Guide at the end of each 

chapter. In this section a brief summary of the key concepts and principles introduced in the chapter 

is included along with a listing of important terms with which the student should be familiar. These 

terms are highlighted in the text. All items in the Learning Objectives and the Study Guide are 

 “action items” stating something that the student should be able to do. A list of the main equations 

in the chapter is included in the chapter summary.

System of Units
Three systems of units are used throughout the text: the International System of Units (newtons, 

kilograms, meters, and seconds), the British Gravitational System (pounds, slugs, feet, and seconds), 

and the English Engineering System, sometimes called the U.S. Customary System (pounds (or 

pounds force), pounds mass, feet, and seconds). Distribution of the examples and homework prob-

lems between the three sets of units is about 50%, 40%, 10%.

Prerequisites and Topical Organization
A fi rst course in Fluid Mechanics typically appears in the junior year of a traditional engineering 

curriculum. Students should have studied statics and dynamics, and mechanics of materials should 

be at least a co-requisite. Prior mathematics should include calculus, with at least the rudiments of 

vector calculus, and diff erential equations.

 In the fi rst four chapters of this text the student is made aware of some fundamental aspects 

of fl uid mechanics, including important fl uid properties, fl ow regimes, pressure variation in fl uids 

at rest and in motion, fl uid kinematics, and methods of fl ow description and analysis. The Bernoulli 

equation is introduced in Chapter 3 to draw attention, early on, to some of the interesting eff ects 

and applications of the relationship between fl uid motion and pressure in a fl ow fi eld. We believe 

that this early consideration of elementary fl uid dynamics increases student enthusiasm for the more 

complicated material that follows. In Chapter 4 we convey the essential elements of fl ow  kinematics, 

including Eulerian and Lagrangian descriptions of fl ow fi elds, and indicate the vital relationship 

between the two views. For instructors who wish to consider kinematics in detail before the material 

on elementary fl uid dynamics, Chapters 3 and 4 can be interchanged without loss of continuity.

 Chapters 5, 6, and 7 expand on the basic methods generally used to solve or to begin solving 

fl uid mechanics problems. Emphasis is placed on understanding how fl ow phenomena are described 

mathematically and on when and how to use infi nitesimal or fi nite control volumes. The eff ects 

of fl uid friction on pressure and velocity are also considered in some detail. Although Chapter 5 



xvi       Preface

considers fl uid energy and energy dissipation, a formal course in thermodynamics is not a neces-

sary prerequisite. Chapter 7 features the advantages of using dimensional analysis and similitude for 

organizing data and for planning experiments and the basic techniques involved.

 Owing to the growing importance of computational fl uid dynamics (CFD) in engineering de-

sign and analysis, material on this subject is included in Appendix A. This material may be omitted 

without any loss of continuity to the rest of the text.

 Chapters 8 through 12 off er students opportunities for the further application of the principles 

learned earlier in the text. Also, where appropriate, additional important notions such as boundary 

layers, transition from laminar to turbulent fl ow, turbulence modeling, and fl ow separation are intro-

duced. Practical concerns such as pipe fl ow, open-channel fl ow, fl ow measurement, drag and lift, the 

eff ects of compressibility, and the fundamental fl uid mechanics of turbomachinery are included.

 Students who study this text and solve a representative set of the problems will have acquired 

a useful knowledge of the fundamentals of fl uid mechanics. Faculty who use this text are provided 

with numerous topics to select from in order to meet the objectives of their own courses. More 

material is included than can be reasonably covered in one term. There is suffi  cient material for a 

second course, most likely titled “Applied Fluid Mechanics.” All are reminded of the fi ne collection 

of supplementary material. We have cited throughout the text various articles and books that are 

available for enrichment.

Instructor Resources

WileyPLUS provides instructor resources, such as the Instructor Solutions Manual, containing com-

plete, detailed solutions to all of the problems in the text, and fi gures from the text appropriate for 

use in lecture slides. Sign up for access at www.wileyplus.com.

Student Resources:
Through a registration process, WileyPLUS also provides access to students for appropriate  resources 

such as fl uids videos and additional problems, among others.

Harnessing the full power of WileyPLUS:
If an educator chooses to require WileyPLUS for their course, the educator will set up the WileyPLUS 

course in advance and request students to register and use it. Students obtain access via a registration 

code that may be added to a print edition or purchased for online-only access.

WileyPLUS builds students’ confi dence because it takes the guesswork out of studying by provid-

ing students with a clear roadmap: what to do, how to do it, if they did it right. This interactive 

approach focuses on:

CONFIDENCE: Research shows that students experience a great deal of anxiety over studying. 

That’s why we provide a structured learning environment that helps students focus on what to do, 

along with the support of immediate resources.

MOTIVATION: To increase and sustain motivation throughout the semester, WileyPLUS helps 

students learn how to do it at a pace that’s right for them. Our integrated resources—available 

24/7—function like a personal tutor, directly addressing each student’s demonstrated needs with 

specifi c problem-solving techniques.

SUCCESS: WileyPLUS helps to assure that each study session has a positive outcome by putting 

students in control. Through instant feedback and study objective reports, students know if they did 
it right, and where to focus next, so they achieve the strongest results.

With WileyPLUS, our effi  cacy research shows that students improve their outcomes by as much as 

one letter grade. WileyPLUS helps students take more initiative, so you’ll have greater impact on 

their achievement in the classroom and beyond.

http://www.wileyplus.com
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What do students receive with WileyPLUS?
■ The complete digital textbook, saving students up to 60% off the cost of a printed text.

■ Question assistance, including links to relevant sections in the online digital textbook.

■ Immediate feedback and proof of progress, 24/7.

■ Integrated, multimedia resources—including fluids phenomena videos, problem-solving videos, 

What An Engineer Sees animations, practice reading questions, and much more—that provide 

multiple study paths and encourage more active learning.

What do instructors receive with WileyPLUS?
■ Reliable resources that reinforce course goals inside and outside of the classroom.

■ The ability to easily identify those students who are falling behind.

■ Media-rich course materials and assessment content including Instructor Solutions Manual, fig-

ures from the text appropriate for use in lecture slides, Fluids Phenomena Videos, autogradable 

Reading Questions that can be used in Pre-Lecture Quizzes, autogradable concept questions, 

autogradable Homework Problems, and much more.

Sign up for access at www.wileyplus.com.
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Fluid mechanics is the discipline within the broad field of applied mechanics that is concerned with 
the behavior of liquids and gases at rest or in motion. It covers a vast array of phenomena that occur 
in nature (with or without human intervention), in biology, and in numerous engineered, invented, 
or manufactured situations. There are few aspects of our lives that do not involve fluids, either 
directly or indirectly.
 The immense range of different flow conditions is mind-boggling and strongly dependent on 
the value of the numerous parameters that describe fluid flow. Among the long list of parameters 
involved are (1) the physical size of the flow, ℓ; (2) the speed of the flow, V; and (3) the pressure, 
p, as indicated in the figure in the margin for a light aircraft parachute recovery system. These are 
just three of the important parameters that, along with many others, are discussed in detail in  various 
sections of this book. To get an inkling of the range of some of the parameter values involved and 
the flow situations generated, consider the following.

■ Size, ℓ
 Every flow has a characteristic (or typical) length associated with it. For example, for flow 

of fluid within pipes, the pipe diameter is a characteristic length. Pipe flows include the 
flow of water in the pipes in our homes, the blood flow in our arteries and veins, and the 
airflow in our bronchial tree. They also involve pipe sizes that are not within our  everyday 
experiences. Such examples include the flow of oil across Alaska through a 4-foot-diameter, 
799-mile-long pipe and, at the other end of the size scale, the new area of interest involving 
flow in nano scale pipes whose diameters are on the order of 10−8 m. Each of these pipe 
flows has important characteristics that are not found in the others.

Characteristic lengths of some other flows are shown in Fig. 1.1a.
■ Speed, V
 As we note from The Weather Channel, on a given day the wind speed may cover what we 

think of as a wide range, from a gentle 5-mph breeze to a 100-mph hurricane or a 250-mph 

 (Photograph courtesy 
of CIRRUS Design 
Corporation.)

�
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After completing this chapter, you should be able to:
■ list the dimensions and units of physical quantities.
■ identify the key fluid properties used in the analysis of fluid behavior.
■ calculate values for common fluid properties given appropriate information.
■ explain effects of fluid compressibility.
■ use the concepts of viscosity, vapor pressure, and surface tension.

Learning Objectives

Introduction
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tornado. However, this speed range is small compared to that of the almost imperceptible 
flow of the fluid-like magma below the Earth’s surface that drives the continental drift 
motion of the tectonic plates at a speed of about 2 × 10−8 m/s or the hypersonic airflow 
around a meteor as it streaks through the atmosphere at 3 × 104 m/s.

Characteristic speeds of some other flows are shown in Fig. 1.1b.
■ Pressure, p
 The pressure within fluids covers an extremely wide range of values. We are accustomed 

to the 35 psi (lb/in.2) pressure within our car’s tires, the “120 over 70” typical blood pres-
sure reading, or the standard 14.7 psi atmospheric pressure. However, the large 10,000 psi 
pressure in the hydraulic ram of an earth mover or the tiny 2 × 10−6 psi pressure of a sound 
wave generated at ordinary talking levels are not easy to comprehend.

Characteristic pressures of some other flows are shown in Fig. 1.1c.

 The list of fluid mechanics applications goes on and on. But you get the point. Fluid 
mechanics is a very important, practical subject that encompasses a wide variety of situations. It 
is very likely that during your career as an engineer you will be involved in the analysis and 
design of systems that require a good understanding of fluid mechanics. Although it is not pos-
sible to adequately cover all of the important areas of fluid mechanics within one book, it is 
hoped that this introductory text will provide a sound foundation of the fundamental aspects of 
fluid mechanics.
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■ Figure 1.1 Characteristic values of some fluid flow parameters for a variety of flows: (a) object size, (b) fluid 
speed, (c) fluid pressure.
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1.1 Some Characteristics of Fluids

One of the first questions we need to explore is––what is a fluid? Or we might ask–what is the 
 difference between a solid and a fluid? We have a general, vague idea of the difference. A solid is 
“hard” and not easily deformed, whereas a fluid is “soft” and is easily deformed (we can readily 
move through air). Although quite descriptive, these casual observations of the differences between 
solids and fluids are not very satisfactory from a scientific or engineering point of view. A closer 
look at the molecular structure of materials reveals that matter that we commonly think of as a solid 
(steel, concrete, etc.) has densely spaced molecules with large intermolecular cohesive forces that 
allow the solid to maintain its shape, and to not be easily deformed. However, for matter that we 
normally think of as a liquid (water, oil, etc.), the molecules are spaced farther apart, the intermo-
lecular forces are smaller than for solids, and the molecules have more freedom of movement. Thus, 
liquids can be easily deformed (but not easily compressed) and can be poured into containers or 
forced through a tube. Gases (air, oxygen, etc.) have even greater molecular spacing and freedom 
of motion with negligible cohesive intermolecular forces, and as a consequence are easily deformed 
(and compressed) and will completely fill the volume of any container in which they are placed. 
Both liquids and gases are fluids.

Will what works in air work in water? For the past few years 
a San Francisco company has been working on small, maneuver-
able submarines designed to travel through water using wings, 
controls, and thrusters that are similar to those on jet airplanes. 
After all, water (for submarines) and air (for airplanes) are both 
fluids, so it is expected that many of the principles governing the 
flight of airplanes should carry over to the “flight” of winged 
 submarines. Of course, there are differences. For example, the 

submarine must be designed to withstand external pressures of 
nearly 700 pounds per square inch greater than that inside the 
vehicle. On the other hand, at high altitude where commercial 
jets fly, the exterior pressure is 3.5 psi rather than standard sea-
level pressure of 14.7 psi, so the vehicle must be pressurized 
internally for passenger comfort. In both cases, however, the 
design of the craft for minimal drag, maximum lift, and efficient 
thrust is governed by the same fluid dynamic concepts.

THE WIDE WORLD OF FLUIDS

 Although the differences between solids and fluids can be explained qualitatively on the basis 
of molecular structure, a more specific distinction is based on how they deform under the action of 
an external load. Specifically, a fluid is defined as a substance that deforms continuously when 
acted on by a shearing stress of any magnitude. A shearing stress (force per unit area) is created 
whenever a tangential force acts on a surface as shown by the figure in the margin. When common 
solids such as steel or other metals are acted on by a shearing stress, they will initially deform 
 (usually a very small deformation), but they will not continuously deform (flow). However, com-
mon fluids such as water, oil, and air satisfy the definition of a fluid—that is, they will flow when 
acted on by a shearing stress. Some materials, such as slurries, tar, putty, toothpaste, and so on, are 
not easily classified since they will behave as a solid if the applied shearing stress is small, but if 
the stress exceeds some critical value, the substance will flow. The study of such materials is called 
rheology and does not fall within the province of classical fluid mechanics. Thus, all the fluids we 
will be concerned with in this text will conform to the definition of a fluid.
 Although the molecular structure of fluids is important in distinguishing one fluid from 
another, it is not yet practical to study the behavior of individual molecules when trying to describe 
the behavior of fluids at rest or in motion. Rather, we characterize the behavior by considering the 
average, or macroscopic, value of the quantity of interest, where the average is evaluated over a 
small volume containing a large number of molecules. Thus, when we say that the velocity at a 
certain point in a fluid is so much, we are really indicating the average velocity of the molecules in 
a small volume surrounding the point. The volume is small compared with the physical dimensions 
of the system of interest, but large compared with the average distance between molecules. Is this 
a reasonable way to describe the behavior of a fluid? The answer is generally yes, since the spacing 
between molecules is typically very small. For gases at normal pressures and temperatures, the 
spacing is on the order of 10−6 mm, and for liquids it is on the order of 10−7 mm. The number of 

Both liquids and 
gases are fluids.

F

Surface
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molecules per cubic millimeter is on the order of 10 18 for gases and 10 21 for liquids. It is thus clear 
that the number of molecules in a very tiny volume is huge and the idea of using average values 
taken over this volume is certainly reasonable. We thus assume that all the fluid characteristics we 
are interested in (pressure, velocity, etc.) vary continuously throughout the fluid—that is, we treat 
the fluid as a continuum and we refer to the very small volume as a point in the flow. This concept 
will certainly be valid for all the circumstances considered in this text. One area of fluid mechanics 
for which the continuum concept breaks down is in the study of rarefied gases such as would be 
encountered at very high altitudes. In this case the spacing between air molecules can become large 
and the continuum concept is no longer acceptable.

1.2 Dimensions, Dimensional Homogeneity, and Units

Since in our study of fluid mechanics we will be dealing with a variety of fluid characteristics, it 
is necessary to develop a system for describing these characteristics both qualitatively and quan-
titatively. The qualitative aspect serves to identify the nature, or type, of the characteristics (such 
as length, time, stress, and velocity), whereas the quantitative aspect provides a numerical mea-
sure of the characteristics. The quantitative description requires both a number and a standard by 
which various quantities can be compared. A standard for length might be a meter or foot, for 
time an hour or second, and for mass a slug or kilogram. Such standards are called units, and 
several systems of units are in common use as described in the following section. The qualitative 
description is conveniently given in terms of certain primary quantities, such as length, L, time, 
T, mass, M, and temperature, ϴ. These primary quantities can then be used to provide a qualita-
tive description of any other secondary quantity: for example, area ≐ L 2, velocity ≐ LT 

−1, 
density ≐ ML−3, and so on, where the symbol ≐ is used to indicate the dimensions of the 
 secondary quantity in terms of the primary quantities. Thus, to describe qualitatively a velocity, 
V, we would write

V ≐ LT 
−1

and say that “the dimensions of a velocity equal length divided by time.” The primary quantities are 
also referred to as basic dimensions.

 For a wide variety of problems involving fluid mechanics, only the three basic dimensions, L, 
T, and M are required. Alternatively, L, T, and F could be used, where F is the basic dimensions of 
force. Since Newton’s law states that force is equal to mass times acceleration, it follows that 
F ≐ MLT 

−2 or M ≐ FL−1 T 
2. Thus, secondary quantities expressed in terms of M can be expressed 

in terms of F through the relationship above. For example, stress, σ, is a force per unit area, so that 
σ ≐ FL−2, but an equivalent dimensional equation is σ ≐ ML−1T 

−2. Table 1.1 provides a list of 
dimensions for a number of common physical quantities.
 All theoretically derived equations are dimensionally homogeneous—that is, the dimensions 
of the left side of the equation must be the same as those on the right side, and all additive separate 
terms must have the same dimensions. We accept as a fundamental premise that all equations 
describing physical phenomena must be dimensionally homogeneous. If this were not true, we 
would be attempting to equate or add unlike physical quantities, which would not make sense. For 
example, the equation for the velocity, V, of a uniformly accelerated body is

 V = V0 + at (1.1)
where V0 is the initial velocity, a the acceleration, and t the time interval. In terms of dimensions 
the equation is

LT 
−1 ≐ LT 

−1 + LT 
−2T

and thus Eq. 1.1 is dimensionally homogeneous.
 Some equations that are known to be valid contain constants having dimensions. The equation 
for the distance, d, traveled by a freely falling body can be written as

 d = 16.1t 
2 (1.2)

Fluid characteris-
tics can be 
described 
qualitatively in 
terms of certain 
basic quantities 
such as length, 
time, and mass.



1.2   Dimensions, Dimensional Homogeneity, and Units          5

and a check of the dimensions reveals that the constant must have the dimensions of LT
 

−2 if the 
equation is to be dimensionally homogeneous. Actually, Eq. 1.2 is a special form of the well-known 
equation from physics for freely falling bodies,

 d =
gt 

2

2
 (1.3)

in which g is the acceleration of gravity. Equation 1.3 is dimensionally homogeneous and valid in 
any system of units. For g = 32.2 ft͞s2 the equation reduces to Eq. 1.2 and thus Eq. 1.2 is valid 
only for the system of units using feet and seconds. Equations that are restricted to a particular 
system of units can be denoted as restricted homogeneous equations, as opposed to equations valid 
in any system of units, which are general homogeneous equations. The preceding discussion indi-
cates one rather elementary, but important, use of the concept of dimensions: the determination of 
one aspect of the generality of a given equation simply based on a consideration of the dimensions 
of the various terms in the equation. The concept of dimensions also forms the basis for the powerful 
tool of dimensional analysis, which is considered in detail in Chapter 7.
 Note to the users of this text. All of the examples in the text use a consistent problem-
solving methodology, which is similar to that in other engineering courses such as statics. Each 
example highlights the key elements of analysis: Given, Find, Solution, and Comment.

 The Given and Find are steps that ensure the user understands what is being asked in the 
problem and explicitly list the items provided to help solve the problem.
 The Solution step is where the equations needed to solve the problem are formulated and the 
problem is actually solved. In this step, there are typically several other tasks that help to set up the 
solution and are required to solve the problem. The first is a drawing of the problem; where appro-
priate, it is always helpful to draw a sketch of the problem. Here the relevant geometry and coordi-
nate system to be used as well as features such as control volumes, forces and pressures, velocities, 
and mass flow rates are included. This helps in gaining an understanding of the problem. Making 
appropriate assumptions to solve the problem is the second task. In a realistic engineering problem-
solving environment, the necessary assumptions are developed as an integral part of the solution 
process. Assumptions can provide appropriate simplifications or offer useful constraints, both of 

General homoge-
neous equations 
are valid in any 
system of units.

■ Table 1.1
Dimensions Associated with Common Physical Quantities

 FLT  MLT
 System System

Acceleration LT 
−2 LT 

−2

Angle F 
0L0T 

0 M 
0L0T 

0

Angular acceleration T 
−2 T 

−2

Angular velocity T 
−1 T 

−1

Area L2 L2

Density FL−4T 
2 ML−3

Energy FL ML2T 
−2

Force F MLT 
−2

Frequency T 
−1 T 

−1

Heat FL ML2T 
−2

Length L L
Mass FL−1T 

2 M
Modulus of elasticity FL−2 ML−1T 

−2

Moment of a force FL ML2T 
−2

Moment of inertia (area) L4 L4

Moment of inertia (mass) FLT 
2 ML2

Momentum FT MLT 
−1

 FLT  MLT
 System System

Power FLT 
−1 ML2T 

−3

Pressure FL−2 ML−1T 
−2

Specifi c heat L2T 
−2ϴ−1 L2T 

−2ϴ−1

Specifi c weight FL−3 ML−2 T 
−2

Strain F 
0L0 T  

0 M 
0L0 T  

0

Stress FL−2 ML−1T 
−2

Surface tension FL−1 MT 
−2

Temperature ϴ ϴ

Time T T
Torque FL ML2T 

−2

Velocity LT 
−1 LT 

−1

Viscosity (dynamic) FL−2 T  ML−1T 
−1

Viscosity (kinematic) L2
 T 

−1 L2T 
−1

Volume L3 L3

Work FL ML2T −2
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which can help in solving the problem. Throughout the examples in this text, the necessary assump-
tions are embedded within the Solution step, as they are in solving a real-world problem. This 
provides a realistic problem-solving experience.
 The final element in the methodology is the Comment. For the examples in the text, this 
 section is used to provide further insight into the problem or the solution. It can also be a point in 
the analysis at which certain questions are posed. For example: Is the answer reasonable, and does 
it make physical sense? Are the final units correct? If a certain parameter were changed, how would 
the answer change? Adopting this type of methodology will aid in the development of problem-
solving skills for fluid mechanics, as well as other engineering disciplines.

EXAMPLE 1.1 Restricted and General Homogeneous Equations

GIVEN A liquid flows through an orifice located in the side of 
a tank as shown in Fig. E1.1. A commonly used equation for 
determining the volume rate of flow, Q, through the orifice is

Q = 0.61 A√2gh

where A is the area of the orifice, g is the acceleration of gravity, 
and h is the height of the liquid above the orifice.

FIND Investigate the dimensional homogeneity of this formula.

SOLUTION

The dimensions of the various terms in the equation are Q = 
volume/time ≐ L3T −1, A = area ≐ L2, g = acceleration of gravity ≐ 
LT −2, and  h = height ≐ L.

These terms, when substituted into the equation, yield the dimen-
sional form:

(L3T 
−1) ≐ (0.61)(L2) ( √2 ) (LT 

−2)1͞ 2(L)1͞ 2

or

(L3T 
−1) ≐ [0.61√2](L3T 

−1)

It is clear from this result that the equation is dimensionally 
homogeneous (both sides of the formula have the same dimen-
sions of L3T 

−1), and the number 0.61 √2 is dimensionless.
 If we were going to use this relationship repeatedly, we might 
be tempted to simplify it by replacing g with its standard value of 
32.2 ft ͞s2 and rewriting the formula as

 Q = 4.90 A√h (1)

A quick check of the dimensions reveals that

L3T 
−1 ≐ (4.90)(L5͞ 2)

and, therefore, the equation expressed as Eq. 1 can only be 
dimensionally correct if the number 4.90 has the dimensions 
of L1͞ 2T 

−1. Whenever a number appearing in an equation or 
formula has dimensions, it means that the specific value of the 
number will depend on the system of units used. Thus, for the case 
being considered with feet and seconds used as units, the num-
ber 4.90 has units of ft1͞ 2͞s. Equation 1 will only give the 
correct value for Q (in ft3͞s)  when A is expressed in square 
feet and h in feet. Thus, Eq. 1 is a restricted homogeneous 
equation, whereas the original equation is a general homoge-
neous equation that would be valid for any consistent system 
of units.

COMMENT A quick check of the dimensions of the various 
terms in an equation is a useful practice and will often be 
helpful in eliminating errors—that is, as noted previously, all 
physically meaningful equations must be dimensionally homo-
geneous. We have briefly alluded to units in this example, and 
this important topic will be considered in more detail in the 
next section.

■ Figure E1.1

(a)

Q

h

A

(b)

1.2.1 Systems of Units
In addition to the qualitative description of the various quantities of interest, it is generally neces-
sary to have a quantitative measure of any given quantity. For example, if we measure the width of 
this page in the book and say that it is 10 units wide, the statement has no meaning until the unit of 
length is defined. If we indicate that the unit of length is a meter, and define the meter as some 
standard length, a unit system for length has been established (and a numerical value can be given 
to the page width). In addition to length, a unit must be established for each of the remaining basic 
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quantities (force, mass, time, and temperature). There are several systems of units in use, and we 
shall consider three systems that are commonly used in engineering.
 International System (SI). In 1960 the Eleventh General Conference on Weights and 
Measures, the international organization responsible for maintaining precise uniform standards of 
measurements, formally adopted the International System of Units as the international standard. 
This system, commonly termed SI, has been widely adopted worldwide and is widely used 
(although certainly not exclusively) in the United States. It is expected that the long-term trend will 
be for all countries to accept SI as the accepted standard and it is imperative that engineering stu-
dents become familiar with this system. In SI the unit of length is the meter (m), the time unit is the 
second (s), the mass unit is the kilogram (kg), and the temperature unit is the kelvin (K). Note that 
there is no degree symbol used when expressing a temperature in kelvin units. The kelvin tempera-
ture scale is an absolute scale and is related to the Celsius (centigrade) scale (°C) through the 
relationship

K = °C + 273.15

Although the Celsius scale is not in itself part of SI, it is common practice to specify temperatures 
in degrees Celsius when using SI units.
 The force unit, called the newton (N), is defined from Newton’s second law as

1 N = (1 kg)(1 m ͞s2)

Thus, a 1-N force acting on a 1-kg mass will give the mass an acceleration of 1 m͞s2. Standard 
gravity in SI is 9.807 m͞s2 (commonly approximated as 9.81 m͞s2) so that a 1-kg mass weighs 9.81 N 
under standard gravity. Note that weight and mass are different, both qualitatively and quantita-
tively! The unit of work in SI is the joule (J), which is the work done when the point of application 
of a 1-N force is displaced through a 1-m distance in the direction of a force. Thus,

1 J = 1 N ∙ m

The unit of power is the watt (W) defined as a joule per second. Thus,

1 W = 1 J͞s = 1 N ∙ m͞s

 Prefixes for forming multiples and fractions of SI units are given in Table 1.2. For example, 
the notation kN would be read as “kilonewtons” and stands for 103 N. Similarly, mm would be read 
as “millimeters” and stands for 10−3 m. The centimeter is not an accepted unit of length in the SI 
system, so for most problems in fluid mechanics in which SI units are used, lengths will be 
expressed in millimeters or meters.

 British Gravitational (BG) System. In the BG system the unit of length is the foot (ft), the 
time unit is the second (s), the force unit is the pound (lb), and the temperature unit is the degree 
Fahrenheit (°F) or the absolute temperature unit is the degree Rankine (°R), where

°R = °F + 459.67

In mechanics it is 
very important to 
distinguish between 
weight and mass.

■ Table 1.2
Prefi xes for SI Units

Factor by Which Unit
Is Multiplied Prefi x Symbol

 1015 peta P
 1012 tera T
 109 giga G
 106 mega M
 103 kilo k
 102 hecto h
 10 deka da
 10−1 deci d

Factor by Which Unit
Is Multiplied Prefi x Symbol

 10−2 centi c
 10−3 milli m
 10−6 micro μ
 10−9 nano n
 10−12 pico p
 10−15 femto f
 10−18 atto a
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The mass unit, called the slug, is defined from Newton’s second law (force = mass × acceleration) 
as

1 lb = (1 slug)(1 ft ͞s2)

This relationship indicates that a 1-lb force acting on a mass of 1 slug will give the mass an accel-
eration of 1 ft͞s2.
 The weight, � (which is the force due to gravity, g), of a mass, m, is given by the equation

� = mg

and in BG units

�(lb) = m (slugs) g(ft͞s2)

Since Earth’s standard gravity is taken as g = 32.174 ft͞s2 (commonly approximated as 32.2 ft͞s2), 
it follows that a mass of 1 slug weighs 32.2 lb under standard gravity.

How long is a foot? Today, in the United States, the common 
length unit is the foot, but throughout antiquity the unit used 
to measure length has quite a history. The first length units 
were based on the lengths of various body parts. One of the 
earliest units was the Egyptian cubit, first used around 3000 B.C. 
and defined as the length of the arm from elbow to extended 
fingertips. Other measures followed, with the foot simply taken 
as the length of a man’s foot. Since this length obviously varies 
from person to person it was often “standardized” by using the 
length of the current reigning royalty’s foot. In 1791 a special 

French commission proposed that a new universal length unit 
called a meter (metre) be defined as the distance of one-
quarter of the Earth’s meridian (north pole to the equator) 
divided by 10 million. Although controversial, the meter was 
accepted in 1799 as the standard. With the development of 
advanced technology, the length of a meter was redefined in 
1983 as the distance traveled by light in a vacuum during the 
time interval of 1/299,792,458 s. The foot is now defined as 
0.3048 meter. Our simple rulers and yardsticks indeed have an 
intriguing history.

THE WIDE WORLD OF FLUIDS

 English Engineering (EE) System. In the EE system, units for force and mass are defined 
independently; thus special care must be exercised when using this system in conjunction with 
Newton’s second law. The basic unit of mass is the pound mass (lbm), and the unit of force is the 
pound (lb).1 The unit of length is the foot (ft), the unit of time is the second (s), and the absolute 
temperature scale is the degree Rankine (°R). To make the equation expressing Newton’s second 
law dimensionally homogeneous we write it as

 F =
ma
gc

 (1.4)

where gc is a constant of proportionality, which allows us to define units for both force and mass. 
For the BG system, only the force unit was prescribed and the mass unit defined in a consistent 
manner such that gc = 1. Similarly, for SI the mass unit was prescribed and the force unit defined 
in a consistent manner such that gc = 1. For the EE system, a 1-lb force is defined as that force 
which gives a 1 lbm a standard acceleration of gravity, which is taken as 32.174 ft͞s2. Thus, for 
Eq. 1.4 to be both numerically and dimensionally correct

1 lb =
(1 lbm)(32.174 ft͞s2)

gc

so that

gc =
(1 lbm)(32.174 ft͞s2)

(1 lb)

Two systems of units 
that are widely 
used in engineering 
are the British 
Gravitational 
(BG) System and 
the International 
System (SI).

1It is also common practice to use the notation, lbf, to indicate pound force.
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 With the EE system, weight and mass are related through the equation

� =
mg
gc

where g is the local acceleration of gravity. Under conditions of standard gravity (g = gc) the 
weight in pounds and the mass in pound mass are numerically equal. Also, since a 1-lb force gives 
a mass of 1 lbm an acceleration of 32.174 ft ͞s2 and a mass of 1 slug an acceleration of 1 ft ͞s2, it 
follows that

1 slug = 32.174 lbm

 We cannot overemphasize the importance of paying close attention to units when solving 
problems. It is very easy to introduce huge errors into problem solutions through the use of incor-
rect units. Get in the habit of using a consistent system of units throughout a given solution. It 
really makes no difference which system you use as long as you are consistent; for example, don’t 
mix slugs and newtons. If problem data are specified in SI units, then use SI units throughout the 
solution. If the data are specified in BG units, then use BG units throughout the solution. The rela-
tive sizes of the SI, BG, and EE units of length, mass, and force are shown in Fig. 1.2.
 Extensive tables of conversion factors between unit systems, and within unit systems, are 
provided in Appendix E. For your convenience, abbreviated tables of conversion factors for 
some quantities commonly encountered in fluid mechanics are presented in Tables 1.3 and 1.4 
on the inside back cover (using a slightly different format than Appendix E). Note that numbers 
in these tables are presented in computer exponential notation. For example, the number 5.154 E+2 
is the number 5.154×102 in scientific notation. You should note that each conversion factor 
can be thought of as a fraction in which the numerator and denominator are equivalent. For 
example, an entry for “Length” from Table 1.4 instructs the user “To convert from … m … to 
… ft … Multiply by 3.281.” Therefore 1 m is the same length as 3.281 ft. Therefore a fraction 
formed with a numerator of 1 m and a denominator of 3.281 ft is the very definition of a fraction 
with a value of one, as is its reciprocal. This may seem obvious when the units of the denomina-
tor and numerator are of the same dimension. It is equally true for the more complicated conver-
sion factors that include multiple dimensions and therefore a greater number of units. You 
already know that you can multiply any quantity by one without changing its value. Likewise, 
you can multiply (or divide) any quantity by any conversion factor in the tables, provided you 
use both the number and the units. The result will not be incorrect, even if it does not yield the 
result you hoped for.

When solving 
problems it is 
important to use a 
consistent system 
of units, e.g., don’t 
mix BG and SI 
units.

1.0

0.5

m

0 0

1

2

ft

3

Length

1.0

0.5

N

0

Force

0.06

0.04

slug

0

1

lbm

2

0.02

1.0

0.5
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0
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0

0.1

lb

0.2

■ Figure 1.2 Comparison of SI, BG, 
and EE units.




